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Abstract Indefinite kernels have attracted more and more

attentions in machine learning due to its wider application

scope than usual positive definite kernels. However, the re-

search about indefinite kernel clustering is relatively scarce.

Furthermore, existing clustering methods are mainly de-

signed based on positive definite kernels which are inca-

pable in indefinite kernel scenarios. In this paper, we propose

a novel indefinite kernel clustering algorithm termed as in-

definite kernel maximum margin clustering (IKMMC) based

on the state-of-the-art maximum margin clustering (MMC)

model. IKMMC tries to find a proxy positive definite kernel

to approximate the original indefinite one and thus embeds a

new F-norm regularizer in the objective function to measure

the diversity of the two kernels, which can be further opti-

mized by an iterative approach. Concretely, at each iteration,

given a set of initial class labels, IKMMC firstly transforms

the clustering problem into a classification one solved by in-

definite kernel support vector machine (IKSVM) with an ex-

tra class balance constraint and then the obtained prediction

labels will be used as the new input class labels at next iter-

ation until the error rate of prediction is smaller than a pre-

specified tolerance. Finally, IKMMC utilizes the prediction

labels at the last iteration as the expected indices of clusters.
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Moreover, we further extend IKMMC from binary clustering

problems to more complex multi-class scenarios. Experimen-

tal results have shown the superiority of our algorithms.

Keywords indefinite kernel, maximum margin clustering,

support vector machine, kernel method

1 Introduction

Kernel method is one of the most powerful techniques in ma-

chine learning. It works by embedding original data into a

high-dimensional feature space where the embedding is de-

fined implicitly through a kernel function, in order to trans-

form the original non-linear learning problems into linear

ones. In the traditional statistical learning theory, kernel func-

tions are required to be positive definite (PD) satisfying the

mercer condition [1] and the corresponding kernel matrix

should be positive semi-definite (PSD) to ensure that original

data can be mapped into a reproducing kernel hilbert space

(RKHS) [2]. As a result, if the original learning problems are

convex, they can still preserve their convexity after kerneliza-

tion and achieve a global optimal solution in the RKHS.

However, such requirement seems to be too strict and diffi-

cult to be satisfied in practical problems [3–8]. On one hand,

standard PD kernels are not suitable in many situations, such

as suboptimal optimization procedures for measure deriva-
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tion [9], partial projections or occlusions [10], and context-

dependent alignments or object comparisons [11]. On the

other hand, several applications have shown that non-PD ker-

nels can result in better performance than PD ones [12]. For

example, in face recognition, Liu [13] utilized a non-PD frac-

tional power polynomial kernel in the kernel principal com-

ponent analysis (KPCA), which can perform much better than

the PD polynomial kernels.

Recently, a series of kernel methods have been proposed

to generalize the kernels from PD to non-PD (that is, in-

definite kernel) scenarios. The simplest method is spec-

trum transformation, which generates a new PSD kernel

matrix by directly transforming the spectrum of the indef-

inite kernel matrix. The corresponding representative algo-

rithms include: “Clip” which neglects the negative eigenval-

ues [14,15], “Flip” which flips the sign of the negative eigen-

values [16] and “Shift” which shifts all the eigenvalues by a

positive constant [17]. Although these algorithms are quite

simple, the valuable information involved by negative eigen-

values is artificially lost.

PD kernel proxy is another more sophisticated method,
which was firstly proposed by Luss and d’Aspremont [18].
They considered an indefinite kernel as a noisy observation
of some unknown PD kernel (proxy kernel) and the corre-
sponding objective function is convex. In order to facilitate
the calculation of the gradient, Luss and d’Aspremont [18]
quadratically smoothed the objective function. Then they pro-
posed the projected gradient algorithm and the cutting plane
algorithm. Waldspurger reformulated the objective function
as a semi-infinite quadratically constrained linear problem
(SIQCLP) [19], and solved the problem iteratively to find a
global optimum solution [20]. Auslender [21] and Chen et

al. [22] further expressed the function as a second order cone
programming (SOCP) problem. Gu and Guo [23] firstly ex-
pressed KPCA as a general kernel transformation framework
and then incorporated the indefinite kernel support vector ma-
chine (IKSVM) into the framework to formulate a joint max-
min optimization model.

Several other algorithms are designed to solve the non-
convex indefinite kernel problem directly. For example, Lin
and Lin [24] proposed an SMO-type method to find a sta-
tionary point in the non-convex dual formulation of SVM
based on a non-PD sigmoid kernel. Haasdonk gave a geo-
metric interpretation of IKSVM model and the correspond-

ing optimization problem can be reformulated as finding the
minimum distance between two convex hulls in some pseudo-
Euclidean space [25]. Ong et al. further extended indefinite

kernels to the reproducing kernel krein space (RKKS) [26-

28]. Xu et al. [29] directly solved a primal form of IKSVM

with difference of convex functions programming.

In the past few years, these indefinite kernel algorithms

have shown much better performance in classification prob-

lems. Xue et al. [30] further extended indefinite kernels into

feature selection problems and proposed a multiple indefinite

kernel feature selection algorithm (MIK-FS). Experimental

results have shown that MIK-FS is superior to some related

state-of-the-art algorithms in both feature selection and clas-

sification performance.

Inspired by these successful applications of indefinite ker-

nels, we naturally consider whether indefinite kernels can

also perform better in clustering problems. However, so far,

the research about indefinite kernel clustering is still rela-

tively scarce. Consequently, here we will focus on this prob-

lem directly.

In view of the excellent performance of indefinite kernel
classification methods with PD kernel proxy, we expect to
utilize these methods to solve clustering problems and thus
propose a novel algorithm termed as indefinite kernel maxi-
mum margin clustering (IKMMC) based on the state-of-the-
art maximum margin clustering model (MMC) [31–37]. Dif-

ferent from usual MMC algorithms with PD kernels, IKMMC
embeds a F-norm regularizer into the model used to measure
the difference between the indefinite kernel and proxy PD
kernel, and further characterizes the corresponding model as
an indefinite kernel classification problem optimized by an
iterative approach.

Concretely, at each iteration, given a set of initial class la-
bels, IKMMC model can be firstly transformed into a clas-

sification problem as an IKSVM with an extra class balance

constraint, and then formulated as a semi-infinite program-

ming (SIP) [38] to solve. The obtained prediction labels will

be used as the new input class labels at next iteration and

the whole iteration procedure continues until the error rate of

prediction is smaller than a pre-specified tolerance. Finally,

the prediction labels at the last iteration are obtained as the

expected indices of clusters in IKMMC.

The rest of the paper is organized as follows. In Section 2,

we give a brief review on MMC model. In Section 3, IK-

MMC model is proposed and the corresponding algorithm is

presented. In Section 4, we extend IKMMC from two-class to

the multi-class scenarios. Systematically experimental com-

parisons with some relative algorithms are reported in Sec-

tion 5. Some conclusions are drawn in Section 6.

2 Maximum margin clustering (MMC)

Traditional MMC model is based on PD kernels, which aims
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to extend the maximum margin principle of SVM to the un-

supervised clustering scenarios.

In two-class clustering settings, given a data set X =

{x1, . . . , xn} ∈ Rd, MMC seeks the hyperplane as well as the

predictive labels by solving the following optimization prob-

lem:

min
y∈{±1}n

min
w,b,ξ

1
2
‖w‖2 +C

n∑

i=1

ξi,

s.t. yi(wTφ(xi) + b) � 1 − ξi, ∀i ∈ {1, . . . , n},
ξi � 0,∀i ∈ {1, . . . , n},
−l �

n∑

i=1

yi � l, (1)

where ξ = [ξ1, ξ2, . . . , ξn]T is the vector of slack variables,

C > 0 is the regularization parameter, and φ is a possibly

nonlinear feature mapping.

Since the class labels are unknown, a trivially “optimal”

solution is to assign all samples to the same class which

would result in an infinite margin. In order to prevent this

meaningless solution, Xu et al. [31] introduced the last bal-

ance constraint in Eq. (1) where l > 0 is a constant controlling

the class imbalance.

Obviously, Eq. (1) is an integer programming which is

more difficult to solve than the quadratic programming. Ac-

cording to [33], Eq. (1) can be slightly relaxed as the follow-

ing formulation:

min
w,b,ξ

1
2
‖w‖2 +C

n∑

i=1

ξi,

s.t. |wTφ(xi) + b| � 1 − ξi, ∀i ∈ {1, . . . , n},
ξi � 0, ∀i ∈ {1, . . . , n},
−l �

n∑

i=1

[wTφ(xi) + b] � l, (2)

where the label vector y is computed through yi =

sign(wTφ(xi) + b).

As can be seen, Eq. (2) is a non-convex programming due

to the first n non-convex constraints which is relatively dif-

ficult to tackle. But during the past decade, a lot of MMC

algorithms have been proposed to solve this non-convex ob-

jective function and achieved good performance which can be

roughly divided into two categories. One category is to utilize

concave convex constrained programming (CCCP) [39] and

cutting plane algorithm [40] to solve the non-convex objec-

tive function directly. The other category is to transform the

objective function into a series of standard SVM classifica-

tion problems so as to utilize the classifiers to solve cluster-

ing, such as iterSVM [32].

3 Two-class indefinite kernel maximum mar-
gin clustering

In this section, we present a novel algorithm called as indef-

inite kernel maximum margin clustering (IKMMC) based on

the traditional MMC model in two-class clustering scenarios.

3.1 Model construction

IKMMC considers the indefinite kernel matrix as a noisy ob-

servation of some unknown PSD one (proxy kernel) and fur-

ther embeds a new F-norm regularizer in the objective func-

tion to measure the diversity of the two kernels. Computa-

tionally, two-class IKMMC solves the following optimization

problem:

min
w,b,ξ,K

1
2
‖w‖2 +C

n∑

i=1

ξi + ρ‖K − K0‖2F ,

s.t. |wTφ(xi) + b| � 1 − ξi, ∀i ∈ {1, . . . , n},
ξi � 0, ∀i ∈ {1, . . . , n},
−l �

n∑

i=1

[wTφ(xi) + b] � l,

K � 0 (3)

where K0 is a pre-specified indefinite kernel matrix, K is the

unknown proxy kernel matrix. The parameter ρ > 0 controls

the magnitude of the penalty on the distance between K and

K0, and ‖ · ‖2F denotes the Frobenius norm of a matrix. φ(xi)

is the mapping induced by the proxy kernel matrix.

The last constraint ensures the proxy kernel matrix is PSD.

Moreover, minimizing the F-norm of K and K0 guarantees

the proxy kernel matrix to be as close as possible to the origi-

nal indefinite one. Obviously, the objective function in Eq. (3)

is also non-convex due to the first n constraints and thus has

no global optimal solution. However, we can reach a stable

point by optimizing Eq. (3) alternatively.

3.2 Optimization algorithm

As mentioned above, we aim to utilize indefinite kernel

classification methods to direct indefinite kernel clustering.

Therefore, we adopt an iterative algorithm to solve Eq. (3)

by decomposing it into a series of convex IKSVM problems

referring to iterSVM [32].

Concretely, at iteration t + 1, we use the prediction labels

at last iteration as the input labels. Therefore, we have the
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following objective function:

min
w,b,ξ,K

1
2
‖w‖2 +C

n∑

i=1

ξi + ρ‖K − K0‖2F ,

s.t. z(t)
i (wTφ(xi) + b) � 1 − ξi, ∀i ∈ {1, . . . , n},
ξi � 0, ∀i ∈ {1, . . . , n},
−l �

n∑

i=1

[wTφ(xi) + b] � l,

K � 0, (4)

where z(t)
i is the output label vector at iteration t computed as

z(t)
i = sign(w(t)Tφ(t)(xi) + b(t)).

Obviously, Eq. (4) is convex in w, b and K, and thus has

a global optimal solution. Similarly to IKSVM, we can write

the dual of Eq. (4) in w, b and ξ as follows:

min
K

max
α,λ,γ

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiα jz
(t)
i z(t)

j φ
T(xi)φ(x j)

−(γ − λ)
n∑

i=1

n∑

j=1

αiz
(t)
i φ

T(xi)φ(x j)

−1
2

(γ − λ)2
n∑

i=1

n∑

j=1

φT(xi)φ(x j)

−(γ + λ)l + ρ‖K − K0‖2F ,

s.t. n(λ − γ) =
n∑

i=1

αiz
(t)
i ,

0 � αi � C, ∀i ∈ {1, . . . , n},
λ � 0, γ � 0,

K � 0. (5)

For simplicity, we denote the objective function in Eq. (5)

as:

S (α, λ, γ, K) =
n∑

i=1

αi − 1/2
n∑

i=1

n∑

j=1

αiα jz
(t)
i z(t)

j φ
T(xi)φ(x j)

−(γ − λ)
n∑

i=1

n∑

j=1

αiz
(t)
i φ

T(xi)φ(x j)

−1/2(γ − λ)2
n∑

i=1

n∑

j=1

φT(xi)φ(x j)

−(γ + λ)l + ρ‖K − K0‖2F .
Obviously, the optimal solution of Eq. (5) is a saddle point

for the function S (α, λ, γ, K) subject to the constraints. Sup-

pose (α∗, λ∗, γ∗, K∗) is the optimal solution. For any feasible

solution, the following inequality holds:

S (α, λ, γ, K∗) � S (α∗, λ∗, γ∗, K∗) � S (α∗, λ∗, γ∗, K).

According to [20], Eq. (5) can be reformulated into a semi-

infinite quadratically constrained linear program (SIQCLP)

problem as follows:

max
α,λ,γ,d

d

s.t. n(λ − γ) =
n∑

i=1

αiz
(t)
i ,

0 � αi � C, ∀i ∈ {1, . . . , n},
λ � 0, γ � 0,

d � S (α, λ, γ, K), ∀K � 0. (6)

Specifically, the last constraint in Eq. (6) can be reformu-

lated as

d � min
K�0

S (α, λ, γ, K),

thus the saddle point can be found when we maximize d in

Eq. (6) subject to the constraints.

Note that the number of K � 0 satisfying the last constraint

in Eq. (6) is infinite. Consequently, Eq. (6) can not be opti-

mized directly. However, we can approach the optimum by

optimizing the variables with a restricted subset of the con-

straints and then update the constraint subset based on the ob-

tained suboptimal solution. For a constraint subset, we have

the following optimization problem [20]:

max
α,λ,γ,d

d

s.t. n(λ − γ) =
n∑

i=1

αiz
(t)
i ,

0 � αi � C, ∀i ∈ {1, . . . , n},
λ � 0, γ � 0,

d � S (α, λ, γ, K j), j ∈ {1, . . . , p}, (7)

Then the solution to Eq. (6) can be found by optimizing

Eq. (7) iteratively. At each iteration, a PD kernel K∗ with the

maximum violation is selected to be added to the last con-

straint subset in Eq. (7). With the number of K � 0 in Eq. (7)

increasing, the solution of Eq. (7) can be infinitely close to

that of Eq. (6).

In fact, the most violated matrix K∗ is the one mini-

mizes S (α, λ, γ, K), which can be computed according to

Theorem 1.

Theorem 1 For K∗ = arg minK�0 S (α, λ, γ, K), the optimal

K∗ is given by

K∗ = (K0 +
1

4ρ
(Z(t)α)(Z(t)α)T +

γ − λ
2ρ

Z(t)α · 1T
n×1

+
(γ − λ)2

4ρ
· 1n×n)+, (8)
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where Z(t) = diag(z(t)
1 , . . . , z

(t)
n ), 1n×1 is a vector of all ones

with the length n, U+ =
∑

i max(0, λi)uiuT
i , λi and ui denote

the ith eigenvalue and eigenvector [18].

Proof For simplicity, S (α, λ, γ, K) can be reformulated as

n∑

i=1

αi − 1/2Tr(K(Z(t)α)(Z(t)α)T)

−(γ − λ)Tr(K(Z(t)α · 1T
n×1))

−1/2(γ − λ)2Tr(K · 1n×n)

−(γ + λ)l + ρ‖K − K0‖2F .

For a fixed (α, λ, γ), the optimal K∗ is the solution of

the optimization problem: minK�0 S (α, λ, γ, K). Specially,

‖K − K0‖2F can be reformulated as Tr((K − K0)T(K − K0)).

So, minK�0 S (α, λ, γ, K) can be written as:

min
{K�0}
ρ · Tr(KTK − 2KT(K0 +

1
4ρ

(Z(t)α)(Z(t)α)T

+
γ − λ

2ρ
Z(t)α · 1T

n×1 +
(γ − λ)2

4ρ
· 1n×n) + KT

0 K0).

Notice that (α, λ, γ) is a constant term for the above prob-

lem, we can replace ρTr(KT
0 K0) by

ρTr((K0 +
1

4ρ
(Z(t)α)(Z(t)α)T +

γ − λ
2ρ

Z(t)α · 1T
n×1

+
(γ − λ)2

4ρ
· 1n×n)T ∗ (K0 +

1
4ρ

(Z(t)α)(Z(t)α)T

+
γ − λ

2ρ
Z(t)α · 1T

n×1 +
(γ − λ)2

4ρ
· 1n×n)),

resulting the following optimization problem about K:

min
{K�0}

‖K − (K0 +
1

4ρ
(Z(t)α)(Z(t)α)T +

γ − λ
2ρ

Z(t)α · 1T
n×1

+
(γ − λ)2

4ρ
· 1n×n)‖2F .

Therefore, the optimal K∗ is the projection of the matrix

K0 +
1

4ρ
(Z(t)α)(Z(t)α)T +

γ − λ
2ρ

Z(t)α · 1T
n×1 +

(γ − λ)2

4ρ
· 1n×n

on the cone of positive semi-definite matrix. Thus, the opti-

mal solution to this problem is given by

(K0+
1

4ρ
(Z(t)α)(Z(t)α)T+

γ − λ
2ρ

Z(t)α ·1T
n×1+

(γ − λ)2

4ρ
·1n×n)+.

In summary, given the labels at iteration t, we can approach

the solution of Eq. (5) by optimizing Eq. (7) iteratively. Then

the prediction labels at current iteration will be used as in-

put labels in next iteration until the error rate of prediction

is smaller than a pre-specified tolerance. The pseudo-code of

IKMMC is shown below Algorithm 1:

Algorithm 1 Two-class IKMMC

Input: Indefinite original kernel K0, regularization parameters C, ρ
and imbalance parameter l.

Output: w, b, K and y

1. Initialization: t = 0, initialize the labeling vector y ∈ {±1}n
randomly.

2. repeat

3. Initialization: i = 0, K_set = φ

(d0,α0, λ0, γ0)← max
α,λ,γ

S (α, λ, γ, (K0)+)

4. repeat

5. i = i + 1;

6. compute K∗ from Eq. (8);

7. if S (αi−1, λi−1, γi−1, K∗) � di−1

8. break;

9. else

10. update K_set ← K_set ∪ {K∗}
11. end if

12. get (di ,αi, λi, γi) by optimizing Eq. (7). go to step.5.

13. until convergence.

14. t = t + 1;

compute w and b;

compute z(t)
i = sign(wTφ(xi) + b). go to step.3.

15. until variation_ratio � ε

3.3 Algorithm analysis

As mentioned above, Eqs. (6) and (7) have the same global

optimal solution when there is no suboptimal kernel K∗

found. The optimization procedure of Eq. (6) as well as

Eq. (5) corresponds to Steps 3–13 in Algorithm 1 and the

following theorem analyzes the convergence about these

steps [20].

Theorem 2 Let (d∗,α∗, λ∗, γ∗) be the optimal solution to

the optimization problem in Eq. (6). For simplicity, we de-

note

K∗i = arg min
K�0

S (αi−1, λi−1, γi−1, K),

f (i) = max
1� j�i

S (α j−1, λ j−1, γ j−1, K∗j ),

g(i) = max
α,λ,γ

min
K j∈K_set

S (α, λ, γ, K j),

at ith iteration. Then we have the inequality:

f (i) � d∗ � g(i).

In addition, f (i) is monotonically increasing and g(i) is

monotonically decreasing.

Proof Notice that K_set in Eq. (7) is a subset of K � 0 in

Eq. (6), thus we have
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min
K j∈K_set

S (α, λ, γ, K j) � min
K�0

S (α, λ, γ, K).

The inequality also holds for their corresponding pointwise

maximum with respect to (α, λ, γ):

max
α,λ,γ

min
K j∈K_set

S (α, λ, γ, K j) � max
α,λ,γ

min
K�0

S (α, λ, γ, K).

As a result, g(i) � d∗ holds. Moreover, with the size of

K_set increasing, g(i) is monotonically decreasing.

For any feasible (α, λ, γ), we denote the set of optimal val-

ues satisfying min
K�0

S (α, λ, γ, K) as Ω. As mentioned above,

d∗ is the saddle point value which is the maximum value of

min
K�0

S (α, λ, γ, K) with respect to (α, λ, γ), therefore d∗ is the

maximum value of Ω.

Since K∗i = arg minK�0 S (αi−1, λi−1, γi−1, K) holds, we

have the following equality:

S (αi−1, λi−1, γi−1, K∗i ) = min
K�0

S (αi−1, λi−1, γi−1, K).

which means S (αi−1, λi−1, γi−1, K∗i ) belongs to Ω at the ith it-

eration. As a result, the following equality holds:

f (i) = max
1� j�i

S (α j−1, λ j−1, γ j−1, K∗j ) � d∗.

Obviously, f (i) increases with the addition of K∗ according

to the definition of f (i).

For Steps 3–13, it has f (i) � d∗ � g(i) according to Theo-

rem 2. As a result, we can use the gap between f (i) and g(i) to

trace the convergence of Steps 3–13 of the algorithm. When

the gap is smaller than a pre-specified value, the algorithm

goes to Step 14.

Moreover, for the outer loop, the difference in error rates

from two successive iterations is used as its termination crite-

rion until the error rates is less than ε (which is set to 0.02 in

the experiments). In our experiment, the outer loop can reach

a stable point within ten steps. Note that the computation of

the most violated K∗ takes O(n3) time and the optimization

problem in Eq. (7) which can be regarded as an QP problem

has a time complexity of O(n2) in each iteration. So, Algo-

rithm 1 has a time complexity of O(n3) in total.

4 Multi-class indefinite kernel maximum
margin clustering

In this section, we will extend IKMMC to more sophisticated

multi-class scenarios.

4.1 Model construction

Specifically, when the data set X = {x1, . . . , xn} ∈ Rd and

the class number m are given, we can define a weight vector

wp for each class p ∈ {1, . . . ,m}. The multi-class MMC can

therefore be formulated as [31]:

min
w,ξ,K

1
2

m∑

p=1

‖wp‖2 + C
n∑

i=1

ξi,

s.t. (
m∑

p=1

zipwp − wr)Tφ(xi) + zir � 1 − ξi,

∀i ∈ {1, . . . , n}, r ∈ {1, . . . ,m},
ξi � 0, ∀i ∈ {1, . . . , n},
−l �

n∑

i=1

(wp − wq)Tφ(xi) � l,

∀p, q ∈ {1, . . . ,m}, (9)

where the superscript p denotes the pth class and zip is de-

fined as :

zip =

m∏

q=1,q�p

I[wpTφ(xi)>wqTφ(xi)], ∀i ∈ {1, . . . , n}, p ∈ {1, . . . ,m},

with I(·) denoting the indicator function. Similarly to two-

class clustering, class balance constraints are added in the

formula to control class imbalance.

Instead of a single PD kernel, we consider a non-PD kernel

situation in this section. Similarly, we embed a F-norm regu-

larizer measuring the diversity of the original non-PD kernel

and the proxy kernel into the multi-class MMC model. The

multi-class indefinite kernel maximum margin clustering can

therefore be formulated as:

min
w,ξ,K

1
2

m∑

p=1

‖wp‖2 + C
n∑

i=1

ξi + ρ‖K − K0‖2F ,

s.t. (
m∑

p=1

zipwp − wr)Tφ(xi) + zir � 1 − ξi,

∀i ∈ {1, . . . , n}, r ∈ {1, . . . ,m},
ξi � 0, ∀i ∈ {1, . . . , n},
−l �

n∑

i=1

(wp − wq)Tφ(xi) � l, ∀p, q ∈ {1, . . . ,m},

K � 0 (10)

where

zip =

m∏

q=1,q�p

I[wpTφ(xi)>wqTφ(xi)], ∀i ∈ {1, . . . , n}, p ∈ {1, . . . ,m},

and the label for sample xi is determined as�

yi = arg max
p

wpTφ(xi) =
m∑

p=1

pzip.

Obviously, the objective function in Eq. (10) is also non-

convex due to the first n constraints and difficult to optimize.
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However, similar to two-class IKMMC, we can reach a stable

point by optimizing Eq. (10) alternatively.

4.2 Optimization algorithm

Unlike two-class IKMMC, we initialize the label vector y ∈
{1, . . . ,m}n by k-means algorithm. At each iteration, given

initialized label vector, multi-class IKMMC is firstly trans-

formed to a multi-class IKSVM problem with a set of class

balance constraints. We also choose the semi-infinite pro-

gramming strategy to optimize the IKSVM problem. Then

the output label vector yi = arg maxp wpTφ(xi) is treated as

the input label at next iteration until the error ratio between

two successive iterations is less than a pre-specified constant.

Concretely, at iteration t + 1, we have following objective

function:

min
w,ξ,K

1
2

m∑

p=1

‖wp‖2 +C
n∑

i=1

ξi + ρ‖K − K0‖2F ,

s.t. (
m∑

p=1

z(t)
ip wp − wr)Tφ(xi) + z(t)

ir � 1 − ξi,

∀i ∈ {1, . . . , n}, r ∈ {1, . . . ,m},
ξi � 0, ∀i ∈ {1, . . . , n},
−l �

n∑

i=1

(wp − wq)Tφ(xi) � l, ∀p, q ∈ {1, . . . ,m},

K � 0, (11)

where z(t) ∈ Rn×m is the output label matrix at iteration t.

As two-class IKMMC, we solve the optimization in Eq. (11)

by firstly reformulating it as dual formulation with respect to

(w, ξ):

max
α,λ,γ

min
K

S (α, λ,γ, K),

s.t. αir � 0, ∀i ∈ {1, . . . , n}, r ∈ {1, . . . ,m},
0 �

m∑

r=1

αir � C, ∀i ∈ {1, . . . , n},

λpq � 0, γpq � 0, ∀p, q ∈ {1, . . . ,m},
K � 0, (12)

where

S (α, λ,γ, K) =

−1
2

n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

m∑

p=1

αirα jsz
(t)
ip z(t)

jpKi j

−1
2

n∑

i=1

n∑

j=1

m∑

p=1

αipα jpKi j

−1
2

n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

m∑

p=1

(λpr − γpr)(λps − γps)Ki j

−1
2

n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

m∑

p=1

(λrp − γrp)(λsp − γsp)Ki j

+

n∑

i=1

n∑

j=1

m∑

p=1

m∑

q=1

m∑

r=1

(γpq − λpq)α jrz
(t)
jpKi j

+

n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

m∑

p=1

(λpq − γpq)α jrz
(t)
jpKi j

+

n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

m∑

p=1

(λpq − γpq)(γqr − λqr)Ki j

+

n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

αirα jsz
(t)
jr Ki j

−
n∑

i=1

n∑

j=1

m∑

p=1

m∑

q=1

(γpq − λpq)α jpKi j

−
n∑

i=1

n∑

j=1

m∑

p=1

m∑

q=1

(λpq − γpq)α jpKi j

+

n∑

i=1

m∑

r=1

αir −
n∑

i=1

m∑

r=1

αirz
(t)
ir

−l
m∑

p=1

m∑

q=1

(λpq + γpq) + ρ‖K − K0‖2F ,

where α ∈ Rn×m, λ ∈ Rm×m and γ ∈ Rm×m are the matrixes of

Lagrange dual variables.

Obviously, the optimal solution to the max-min problem in

Eq. (12) is a saddle point for the function S (α, λ,γ, K) sub-

ject to the constraints in Eq. (12). By adding an additional

variable d ∈ R, the max-min optimization problem can be

reformulated into a quadratically constrained linear program

with h quadratic constraints:

max
α,λ,γ,d

d

s.t. αir � 0, ∀i ∈ {1, . . . , n}, r ∈ {1, . . . ,m},
0 �

m∑

r=1

αir � C, ∀i ∈ {1, . . . , n},

λpq � 0, γpq � 0,∀p, q ∈ {1, . . . ,m},
d � S (α, λ,γ, K j), j = 1, . . . , h. (13)

To approach the optimum of Eq. (12), the constraint subset

will be updated based on the obtained sub-optimum in ev-

ery iterative manner. At each iteration, a new PD kernel will

be added into the last constraint subset in Eq. (13). With the

number of constraints increasing, the solution of Eq. (13) can

be infinitely close to that of Eq. (12). For notational simplic-

ity, we have the following variable substitutions:

n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

m∑

p=1

αirα jsz
(t)
ip z(t)

jpKi j
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= Tr(((z(t) z(t)T). ∗ (α1m×mα
T))KT) = Tr(A · KT),

n∑

i=1

n∑

j=1

m∑

p=1

αipα jpKi j

n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

m∑

p=1

(λpr − γpr)(λps − γps)Ki j

= eT
m(λ − γ)(λ − γ)emTr(K1n×n) = B · Tr(K1n×n)
n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

m∑

p=1

(λrp − γrp)(λsp − γsp)Ki j

= eT
m(λ − γ)(λ − γ)TemTr(K1n×n) = C · Tr(K1n×n)
n∑

i=1

n∑

j=1

m∑

r=1

m∑

s=1

αirα jsz
(t)
jr Ki j,

= Tr(((αz(t)T). ∗ (1m×mα
T))KT) = Tr(D · KT)

n∑

i=1

n∑

j=1

m∑

p=1

m∑

q=1

m∑

r=1

(γpq − λpq)α jrz
(t)
jpKi j

= eT
mK((z(t)(γ − λ)em). ∗ (αem)) = eT

mK · E,
n∑

i=1

n∑

j=1

m∑

p=1

m∑

q=1

(γpq − λpq)α jpKi j

= eT
mK(γ − λ)em = eT

mK · F,
n∑

i=1

n∑

j=1

m∑

p=1

m∑

q=1

m∑

r=1

(λpq − γpq)α jrz
(t)
jq Ki j

= eT
mK((z(t)(γ − λ)Tem). ∗ (αem)) = eT

n K · G,
n∑

i=1

n∑

j=1

m∑

p=1

m∑

q=1

(λpq − γpq)α jpKi j

= eT
mKα(λ − γ)Tem = eT

n K · H,
n∑

i=1

n∑

j=1

m∑

p=1

m∑

q=1

m∑

r=1

(λpq − γpq)(λqr − γqr)Ki j

= eT
m(λ − γ)(λ − γ)emTr(K1n×n) = Q · Tr(K1n×n),

where em is a vector of all ones of length m. As a result,

S (α, λ,γ, K) can be further reformulated as follows:

S (α, λ,γ, K) = Tr((−1
2

(A + ααT) + (Q − 1
2

(B + C))1n×n

+D + (E − F + G − H)eT
n )K) +

n∑

i=1

m∑

r=1

αir

−
n∑

i=1

m∑

r=1

αirz
(t)
ir − l

m∑

p=1

m∑

q=1

(λpq + γpq)

+ρ‖K − K0‖2F .

To obtain the optimum of Eq. (12) from a given interme-

diate solution pair (α, λ,γ), we find the next K � 0 with the

most violated violation which can be computed by solving the

minimization problem: minK�0 S (α, λ,γ, K) when (α, λ,γ) is

given.

For simplicity, we further denote

−1
2

(A+ααT)+ (Q− 1
2

(B+C))1n×n + D+ (E− F+G−H)eT
n

as M and the minimization problem min
K�0

S (α, λ,γ, K) can

therefore be formulated as:

min
K�0

Tr(MK) +
n∑

i=1

m∑

r=1

αir −
n∑

i=1

m∑

r=1

αirz
(t)
ir

−l
m∑

p=1

m∑

q=1

(λpq + γpq) + ρ‖K − K0‖2F . (14)

Since that
n∑

i=1

m∑

r=1

αir−
n∑

i=1

m∑

r=1

αirz
(t)
ir −l

m∑

p=1

m∑

q=1

(λpq+γpq), is

a constant term which can be neglected, Eq. (14) is equivalent

to the following problem:

min
K�0

Tr(MK) + ρ‖K − K0‖2F
= min

K�0
Tr(MK) + ρTr(KTK − 2KTK0 + KT

0 K0)

= min
K�0
ρTr(KTK − 2KT(K0 − M

2ρ
) + KT

0 K0) (15)

After replacing the constant term ρTr(KT
0 K0) by ρTr((K0−

M
2ρ )

T(K0 − M
2ρ )), Eq. (15) is equivalent to:

min
K�0
‖K − (K0 − M

2ρ
)‖2F , (16)

thus the corresponding K∗ can be computed as (K0 − M
2ρ )+.

The pseudo-code of multi-class IKMMC is shown as Al-

gorithm 2. Similarly, the gap between f (xi) and g(i) can be

used to trace the convergence of Steps 3–13 of Algorithm 2.

For the outer loop, we also check if the difference in error

rates from two successive iterations is less than ε (which is

set to 0.02 in the experiments). In our experiment, the outer

loop can still reach a stable point within ten steps. Note that

the class number is far smaller than the size of the data set,

the computation of K∗ still take O(n3) time. In each iteration,

the optimization of Eq. (13) takes O(n2) time. As a result, the

algorithm of multi-class IKMMC has a complexity of O(n3)

totally.

5 Experiments

In this section, we demonstrate the clustering error and Rand

Index [41] of the proposed IKMMC algorithms compared

with some relative algorithms on a collection of benchmark

data sets.
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Algorithm 2 Multi-class IKMMC

Input: Indefinite original kernel K0, regularization parameters C, ρ and
Algorithm 2

Output: w, K and y

1. Initialization: t = 0, initialize the label vector by k-means.

2. repeat

3. Initialization: i = 0, K_set = φ

(d0,α0, λ0,γ0)← max
α,λ,γ

S (α,λ,γ, (K0)+)

4. repeat

5. i = i + 1;

6. compute K∗ from Eq. (16);

7. if S (αi−1, λi−1,γi−1, K∗) � di−1

8. break;

9. else

10. update K_set ← K_set ∪ {K∗}
11. end if

12. get (di,αi,λi,γi) by optimizing Eq. (13). go to step 5.

13. until convergence.

14. t = t + 1;

compute w;

compute yi = arg maxp wpTφ(xi). go to step 3.

15. until variation_ratio � ε

5.1 Experimental setup

The benchmark data sets used in the experiment

are shown in Tables 1 and 2. Among these data

sets, DNA_large, ABE_small, SAT_small, SEG_small,

DNA_small, WAV_small are generated by Duan and Keerthi

from the UCI collection DNA, Letter, Satellite Image (SAT),

Image Segmentation (SEG) and Waveform respectively [42].

We randomly select a subset of these data sets from each

class. For DNA_large, we select two classes and randomly

select 481 samples.

Table 1 Description of the two-class data sets

Dataset Size Dimension Class

Pima 768 8 2

Water 116 38 2

DNA_large 481 180 2

Brecancer 277 9 2

Image 1,000 18 2

Sonar 208 60 2

Wdbc 569 30 2

FlareSolar 1,066 9 2

Diabetis 768 8 2

Thyroid 215 5 2

In our experiments, the non-PSD kernel matrix is gener-

ated according to [20]. Concretely, we first generate Gaussian

kernel matrix from the data with the parameter estimated via

cross validation and then apply 0.1 × (E + ET)/2 as the per-

turbation where E is a matrix generated randomly with zero

mean and identity covariance matrix [20]. The value of bal-

ance parameter l is set to 0.03n for balanced data and 0.3n

for unbalanced data [32]. The values of the kernel parame-

ter σ, and the parameters C and ρ are all chosen via cross

validation.

Table 2 Description of the multi-class data sets

Dataset Size Dimension Class

Lenses 24 4 3

Seeds 210 7 3

BalanScale 625 4 3

Iris 150 4 3

Glass 214 9 6

ABE_small 600 16 3

SAT_small 597 36 6

SEG_small 250 18 7

DNA_small 600 180 3

WAV_small 600 21 3

For comparison, we use five algorithms as baselines:

Clip_MMC which generates the PSD kernel matrix by ne-

glecting the negative eigenvalues; Flip_MMC which flips the

sign of the negative eigenvalues; Shift_MMC which shifts all

the eigenvalues by a positive constant; kernelized k-means

(KKM) [43] and iterSVM which are based on the PD ker-

nel without applying perturbation. To make it fair, IKMMC,

Clip_MMC, Flip_MMC, Shift_MMC and iterSVM have the

same initial class labels.

5.2 Results on two-class data sets

Results on the various two-class data sets are summarized in

Tables 3 and 4. The last line is the average value of the results

of the algorithms. As can be seen, the five MMC-based algo-

rithms basically have lower clustering error and higher rand

index value. But the clustering error and rand index of IK-

MMC are best in these five compared clustering algorithms.

It also excels PD clustering algorithm iterSVM in most cases.

These results demonstrate the effectiveness of the proposed

IKMMC.

Figures 1 and 2 plot the clustering errors on Pima, Image,

WDBC, Diabetis with variation values for the parameters σ

and C respectively. Specially, as can be seen, all the algo-

rithms show a trend of shock and the five MMC-based algo-

rithms have roughly similar trend of variation. But IKMMC

performs better than the other four MMC-based algorithms

generally. In particular, for Image and Diabetis, IKMMC

leads lower clustering errors than the other algorithms in

the reasonable range of the parameter σ. As for the param-

eter C, IKMMC still has better results, which indicates the
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Table 3 Clustering error on the various two-class data sets

Dataset Clip_MMC Flip_MMC Shift_MMC KKM iterSVM IKMMC

Pima 0.3854±2.26 0.3438±1.97 0.3646±1.63 0.3555±2.24 0.3815±1.53 0.3281±1.14

Water 0.3534±1.38 0.3621±1.78 0.3707±2.02 0.4397±1.89 0.4138±1.44 0.3448±1.92

DNA_large 0.1663±2.97 0.2266±2.37 0.2973±2.68 0.2287±2.55 0.1455±2.01 0.1601±2.01

Brecancer 0.2491±2.20 0.2599±2.16 0.2491±2.17 0.2996±2.25 0.2635±2.14 0.2491±2.16

Image 0.3350±1.33 0.3250±1.41 0.3250±1.27 0.3580±1.18 0.3330±1.41 0.3020±1.12

Sonar 0.4135±1.26 0.3894±1.02 0.4087±1.19 0.4471±1.16 0.4519±1.36 0.4038±1.09

Wdbc 0.0826±1.81 0.0844±1.14 0.0826±1.12 0.0773±1.51 0.0861±1.38 0.0808±1.05

FlareSolar 0.3893±1.15 0.3959±1.20 0.3884±1.44 0.4315±1.56 0.3846±1.13 0.3837±1.07

Diabetis 0.3177±1.17 0.2891±1.12 0.3008±1.14 0.3294±1.64 0.2969±1.60 0.2656±1.15

Thyroid 0.0977±2.02 0.0977±2.42 0.0930±2.09 0.2279±2.28 0.1116±2.16 0.0930±2.05

Average 0.2790±1.76 0.2774±1.66 0.2880±1.68 0.3195±1.83 0.2868±1.62 0.2611±1.48

Table 4 Rand index on the various two-class data sets

Dataset Clip_MMC Flip_MMC Shift_MMC KKM iterSVM IKMMC

Pima 0.5256±2.11 0.5482±2.12 0.5361±2.20 0.5435±2.09 0.5275±1.89 0.5585±1.98

Water 0.5390±1.08 0.5340±1.07 0.5294±1.06 0.5052±1.65 0.5106±1.05 0.5442±1.12

DNA_large 0.7221±2.18 0.6488±2.27 0.5813±2.36 0.6465±2.54 0.7508±2.17 0.7305±2.09

Brecancer 0.6245±2.03 0.6139±2.15 0.6139±2.10 0.6050±2.37 0.6104±2.26 0.6245±2.20

Image 0.5470±1.39 0.5495±1.43 0.5495±1.35 0.5382±1.64 0.5553±1.22 0.5608±1.26

Sonar 0.5162±2.19 0.5222±2.13 0.5144±2.32 0.5032±2.28 0.5022±2.07 0.5162±2.10

Wdbc 0.8482±1.87 0.8452±1.68 0.8482±1.74 0.8571±2.02 0.8423±1.92 0.8511±1.56

FlareSolar 0.5241±2.45 0.5212±2.34 0.5245±2.58 0.5154±2.51 0.5262±2.24 0.5266±2.17

Diabetis 0.5659±1.56 0.5885±1.65 0.5788±1.37 0.5567±1.71 0.5820±1.23 0.6094±1.34

Thyroid 0.8229±2.16 0.8229±2.31 0.8305±2.35 0.6464±2.48 0.8007±2.25 0.8305±2.30

Average 0.6236±1.90 0.6194±1.92 0.6107±1.94 0.5912±2.13 0.6208±1.83 0.6352±1.81

Fig. 1 Clustering error with variation values for σ on two-class data sets. (a) Pima; (b) image; (c) WDBC; (d) diabetis
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Fig. 2 Clustering error with various values for C on two-class data sets. (a) Pima; (b) image; (c) WDBC; (d) diabetis

excellent performance of IKMMC.

Figure 3 shows the convergence of two-class IKMMC on

the data set Pima. The left figure plots the variation rate of

prediction error of IKMMC on each iteration. The right fig-

ure plots the variation of the objective value. We can see that

the prediction error rate and the objective value are both de-

creasing with the increasing of iteration, which verifies the

effectiveness of the proposed iterative procedure. Moreover,

IKMMC can reach to a stable point within 10 iterations on

almost all data sets in our experiments.

5.3 Results on multi-class data sets

Results on the various multi-class data sets are summarized

in Tables 5 and 6. As a whole, IKMMC still has lower clus-

tering error and higher rand index value on multi-class data

sets.

Figures 4 and 5 plot the clustering error on Lenses, Balan-

Scale, Iris, WAV_small with variation values for the parame-

ters σ and C respectively. As can be seen, all the algorithms

show a more complex trend of shock on the multi-class data

sets within the range ofσ. For the four data sets, IKMMC can

lead lower clustering errors than the other four MMC-based

algorithms in general. Compared with KKM, IKMMC per-

forms better on Lenses, BalanScale and Iris. We can also see

that the five MMC-based algorithms are less sensitive to the

parameter C overall. Moreover, in the range of C, IKMMC

Fig. 3 Convergence of two-class IKMMC
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Table 5 Clustering error on the various multi-class data sets

Dataset Clip_MMC Flip_MMC Shift_MMC KKM iterSVM IKMMC

Lenses 0.3750±2.66 0.3750±2.36 0.4583±2.48 0.4167±2.87 0.3750±2.09 0.3333±2.17

Seeds 0.1095±2.43 0.1095±2.27 0.1048±2.37 0.1143±2.29 0.1095±2.16 0.1048±2.09

BalanScale 0.3104±2.59 0.3216±2.68 0.3264±2.64 0.4208±2.93 0.3168±2.64 0.2992±2.52

Iris 0.0933±1.34 0.1000±1.23 0.0933±1.34 0.1000±1.23 0.0933±1.34 0.0933±1.34

Glass 0.5234±2.48 0.5187±2.52 0.5047±2.65 0.5187±2.71 0.5327±2.21 0.5140±2.16

ABE_small 0.4200±2.72 0.3650±2.85 0.3500±2.56 0.3467±2.81 0.3433±2.35 0.3433±2.35

SAT_small 0.3082±1.25 0.3082±1.21 0.3152±1.52 0.3099±1.79 0.3099±1.68 0.3065±1.28

SEG_small 0.3360±2.13 0.3280±2.24 0.3360±2.13 0.3520±2.34 0.3300±2.33 0.3240±2.21

DNA_small 0.2450±2.47 0.2383±2.56 0.2350±2.67 0.2383±2.85 0.2333±2.43 0.2367±2.47

WAV_small 0.3833±1.52 0.3867±1.65 0.4483±1.47 0.3750±1.89 0.3617±1.32 0.3583±1.40

Average 0.3104±2.16 0.3051±2.16 0.3172±2.18 0.3192±2.37 0.2986±2.06 0.2913±2.00

Table 6 Rand index on the various multi-class data sets

Dataset Clip_MMC Flip_MMC Shift_MMC KKM iterSVM IKMMC

Lenses 0.5471±2.86 0.5471±2.55 0.5471±2.68 0.5797±2.57 0.5471±2.16 0.6123±2.23

Seeds 0.8714±2.62 0.8714±2.77 0.8762±2.72 0.8640±2.83 0.8714±2.27 0.8762±2.30

BalanScale 0.6407±2.39 0.6377±2.36 0.6377±2.23 0.6341±2.41 0.6381±1.89 0.6414±2.07

Iris 0.8923±1.52 0.8859±1.64 0.8923±1.52 0.8859±1.64 0.8923±1.52 0.8923±1.52

Glass 0.6842±2.55 0.6793±2.34 0.6764±2.52 0.7134±2.49 0.6793±2.39 0.6804±2.36

ABE_small 0.6442±2.73 0.6912±2.89 0.7031±2.94 0.7066±2.98 0.7112±2.54 0.7104±2.46

SAT_small 0.8515±2.44 0.8517±2.50 0.8455±2.65 0.8425±2.79 0.8515±2.32 0.8522±2.53

SEG_small 0.8696±2.17 0.8751±2.23 0.8748±2.37 0.8737±2.45 0.8785±2.15 0.8814±2.12

DNA_small 0.7147±2.79 0.7246±2.85 0.7269±2.96 0.7240±3.07 0.7282±2.43 0.7253±2.35

WAV_small 0.6894±2.16 0.6869±2.25 0.6876±2.43 0.6814±2.59 0.6878±2.21 0.6912±2.18

Average 0.7405±2.42 0.7451±2.44 0.7468±2.50 0.7235±2.58 0.7485±2.19 0.7563±2.21

Fig. 4 Clustering error with variation values for σ on multi-class data sets. (a) Lenses; (b) BalanScale; (c) Iris; (d) WAV_small
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Fig. 5 Clustering error with various values for C on multi-class data sets. (a) Lenses; (b) BalanScale; (c) Iris; (d) WAV_small

Fig. 6 Convergence of multi-class IKMMC

can still achieve a lower clustering error.

Figure 6 shows the convergence of multi-class IKMMC on

BalanScale. The variation rate of prediction error of IKMMC

is shown in the left figure and the right figure plots the varia-

tion of objective value with the iteration. With the increasing

of iteration, the objective value is generally decreasing which

demonstrates the effectiveness of the multi-class IKMMC al-

gorithm. Moreover, IKMMC can still reach to a stable point

within ten iterations on almost all multi-class data sets in our

experiments.

6 Conclusion

In this paper, we focus on the indefinite kernel clustering

problem due to the fact that the study of this problem is rel-

atively scarce. The main idea of our method is to decom-

pose the indefinite kernel clustering problem into a series

of IKSVM classification problems, which actually provides

some useful references for the indefinite kernel clustering.

Concretely, we propose a novel model termed as IKMMC

which tries to find a proxy positive definite kernel to approxi-
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mate the original indefinite one. To optimize the sophisticated

non-convex objective function, we adopt an iterative strategy.

Given initial labels, the indefinite kernel clustering problem

can be firstly transferred to an IKSVM problem with an ex-

tra class balance constraint. The prediction labels of IKSVM

are then used as the input labels at next iteration until con-

vergence. Finally, we utilize the prediction labels at the last

iteration as the expected indices of clusters. Moreover, we

extend the IKMMC model from two-class scenarios to more

complex multi-class scenarios. Experimental results on vari-

ous data sets demonstrate the effectiveness of IKMMC.

In future, we aim to utilize multiple indefinite kernel com-

bination instead of single kernel to further improve the per-

formance of IKMMC. Moreover, how to develop a faster al-

gorithm with lower complexity for IKMMC is another topic

for our future research.
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